alexa Simulated knee wear with cobalt chromium and oxidized zirconium knee femoral components.
Genetics

Genetics

Single Cell Biology

Author(s): White SE, Whiteside LA, McCarthy DS, Anthony M, Poggie RA, White SE, Whiteside LA, McCarthy DS, Anthony M, Poggie RA

Abstract Share this page

Abstract A knee simulator that mimics the plowing/rolling wear mechanisms of the knee was used to compare wear properties of cobalt chromium and oxidized zirconium femoral components. The simulator flexes and extends the knee so that the femoral components travels from 0 degrees to 30 degrees while applying axial loads from 130 to 1300 lb. Three oxidized zirconium and 3 cobalt chromium femoral components were tested with 10-mm tibial polyethylene components. The oxidized zirconium femoral components caused significantly less ultra high molecular weight polyethylene wear than cobalt chromium femoral components. Tibial inserts that were articulated against the cobalt chromium components had evidence of scratching, burnishing, and delamination, but none of the surfaces that were articulated against oxidized zirconium components had evidence of delamination. Cobalt chromium surface roughness significantly increased during the 2,000,000 cycle test, but oxidized zirconium surface roughness was not affected. Polyethylene wear was correlated to a significant degree with the surface roughness of the femoral components. The improved wear characteristics of the ceramic articular surfaces can be explained by the wettability of the ceramic surface, which minimized adhesive wear, and the resistance of the hard, ceramic surface to roughening.
This article was published in Clin Orthop Relat Res and referenced in Single Cell Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords