alexa Simulation of IR and Raman spectral based on scaled DFT force fields: a case study of 2-amino 4-hydroxy 6-trifluoromethylpyrimidine, with emphasis on band assignment.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Theoretical and Computational Science

Author(s): Krishnakumar V, Prabavathi N

Abstract Share this page

Abstract This work deals with the vibrational spectroscopy of 2-amino 4-hydroxy 6-triflouromethylpyrimidine (AHFMP) by means of quantum chemical calculations. The mid and far FTIR and FT-Raman spectra were measured in the condensed state. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT) with the standard B3LYP/6-31G* and B3LYP/6-311+G** method and basic set combinations. Normal co-ordinate calculations were performed with the DFT force field corrected by a recommended set of scaling factors yielding fairly good agreement between observed and calculated frequencies. Simulation of infrared and Raman spectra utilizing the results of these calculations led to excellent overall agreement with the observed spectral patterns. The SQM approach applying selective scaling of the DFT force field was shown to be superior to the uniform scaling method in its ability to allow for making modifications in the band assignment, resulting in more accurate simulation of IR and Raman Spectra. This article was published in Spectrochim Acta A Mol Biomol Spectrosc and referenced in Journal of Theoretical and Computational Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords