alexa Simulation of the diffusion and reaction of endogenously produced nitric oxide.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Lancaster JR Jr

Abstract Share this page

Abstract In spite of intense recent investigation of the physiological and pathophysiological roles of endogenously produced nitric oxide (.NO) in mammalian systems, little quantitative information exists concerning the diffusion of this small nonelectrolyte from its source (NO synthase) to its targets of action. I present here a conceptual framework for analyzing the intracellular and intercellular diffusion and reaction of free .NO, using kinetic modeling and calculations of the diffusibility of .NO and its reactions in aqueous solution based on published data. If the half-life of .NO is greater than approximately 25 msec and the rates of reaction of .NO with its targets are slower than its diffusion or reaction with O2 (for which there is experimental evidence in at least some systems), then (i) .NO acts in vivo in a mostly paracrine fashion for a collection of .NO-producing cells, (ii) .NO diffuses to significant concentrations at distances relatively far removed from a single .NO-producing cell, and (iii) localized sites of vascularization will scavenge .NO (and thus decrease its actions) at distances many cell diameters away from that site. These conclusions have important implications with regard to the mechanism of endothelium-dependent relaxation, the autocrine vs. paracrine actions of .NO, and the role of the spatial relationship between specific sites of .NO formation and neighboring blood vessels in .NO-effected and -affected neuronal signal transmission.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords