alexa Simultaneous redox conversion of chromium(VI) and arsenic(III) under acidic conditions.
Engineering

Engineering

Journal of Civil & Environmental Engineering

Author(s): Wang Z, Bush RT, Sullivan LA, Liu J

Abstract Share this page

Abstract Arsenic and chromium are often abundant constituents of acid mine drainage (AMD) and are most harmful as arsenite (As(III)) and hexavalent (Cr(VI)). To simultaneously change their oxidation state from As(III) to As(V), and Cr(VI) to Cr(III), is a potentially effective and attractive strategy for environmental remediation. The coabundance of As(III) and Cr(VI) in natural environments indicates their negligible direct interaction. The addition of H2O2 enables and greatly accelerates the simultaneous oxidation of As(III) and reduction of Cr(VI). These reactions are further enhanced at acidic pH and higher concentrations of Cr(VI). However, the presence of ligands (i.e., oxalate, citrate, pyrophosphate) greatly retards the oxidation of As(III), even though it enhances the reduction of Cr(VI). To explain these results we propose a reaction mechanism where Cr(VI) is primarily reduced to Cr(III) by H2O2, via the intermediate tetraperoxochromate Cr(V). Cr(V) is then involved in the formation of (•)OH radicals. In the presence of ligands, the capacity of Cr(V) to form (•)OH radicals, which are primarily responsible for As(III) oxidation, is practically inhibited. Our findings demonstrate the feasibility for the coconversion of As(III) and Cr(VI) in AMD and real-world constraints to this strategy for environmental remediation. This article was published in Environ Sci Technol and referenced in Journal of Civil & Environmental Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords