alexa Single-cell chemical lysis in picoliter-scale closed volumes using a microfabricated device.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular and Genetic Medicine

Author(s): Irimia D, Tompkins RG, Toner M

Abstract Share this page

Abstract Investigating the intracellular contents of single cells is essential for understanding physiologic and pathologic processes at the cellular level. While existing protocols for cell lysis and sample preparation work well for larger samples, scaling to a single-cell level is challenging because of unavoidable analyte dilution and losses. Thus, we are proposing a microfabricated device for the controlled handling and mixing of picoliter cell suspension and lysis solution volumes. Cells and fluids are independently isolated in two microchambers of 25-pL volumes using the geometry of the microchannels and the coordinated action of four on-chip thermopneumatic actuators. Virtual walls formed by liquid-air interfaces in the hydrophobic capillary separate the two volumes, which are subsequently allowed to mix after drawing the air out of the capillary connecting the two microchambers. Following cell lysis, a limited and stable dilution of intracellular components is achieved, simplifying the requirements for subsequent analysis. Two assays at single-cell level, one for direct estimation of the intracellular concentration of a soluble dye and the other for indirect evaluation of intracellular quantities of insoluble actin, demonstrate the use of the microfabricated device for single-cell assays. This article was published in Anal Chem and referenced in Journal of Molecular and Genetic Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords