alexa Single-molecule mapping of long-range electron transport for a cytochrome b(562) variant.


Journal of Microbial & Biochemical Technology

Author(s): Pia EA, Chi Q, Jones DD, Macdonald JE, Ulstrup J,

Abstract Share this page

Abstract Cytochrome b(562) was engineered to introduce a cysteine residue at a surface-exposed position to facilitate direct self-assembly on a Au(111) surface. The confined protein exhibited reversible and fast electron exchange with a gold substrate over a distance of 20 Å between the heme redox center and the gold surface, a clear indication that a long-range electron-transfer pathway is established. Electrochemical scanning tunneling microscopy was used to map electron transport features of the protein at the single-molecule level. Tunneling resonance was directly imaged and apparent molecular conductance was measured, which both show strong redox-gated effects. This study has addressed the first case of heme proteins and offered new perspectives in single-molecule bioelectronics. This article was published in Nano Lett and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version