alexa Site-specific and random fragmentation of Cu,Zn-superoxide dismutase by glycation reaction. Implication of reactive oxygen species.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular and Genetic Medicine

Author(s): Ookawara T, Kawamura N, Kitagawa Y, Taniguchi N

Abstract Share this page

Abstract Site-specific and random fragmentation of human Cu,Zn-superoxide dismutase (Cu,Zn-SOD) was observed following the glycation reaction (the early stage of the Maillard reaction). The fragmentation proceeded in two steps. In the first step, Cu,Zn-SOD was cleaved at a peptide bond between Pro62 and His63, as judged by amino acid analysis and sequencing of fragment peptides, yielding a large (15 kDa) and a small (5 kDa) fragment. In the second step, random fragmentation occurred. The ESR spectrum of the glycated Cu,Zn-SOD suggested that reactive oxygen species was implicated in the both steps of fragmentation. The same fragmentations were seen upon exposure of the enzyme to an H2O2 bolus. Catalase completely blocked both steps of the fragmentation process, whereas EDTA blocked only the second step. Incubation with glucose resulted in a time-dependent release of Cu2+ from the Cu,Zn-SOD molecule. The released Cu2+ then likely participated in a Fenton's type of reaction to produce hydroxyl radical, which may cause the nonspecific fragmentation. Evidence that EDTA abolished only the second step of fragmentation induced by an H2O2 bolus supports this mechanism. This is the first report that a site-specific fragmentation of a protein is caused by reactive oxygen species formed by the Maillard reaction.
This article was published in J Biol Chem and referenced in Journal of Molecular and Genetic Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version