alexa Site-specific proteolysis of cyclooxygenase-2: a putative step in inflammatory prostaglandin E(2) biosynthesis.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular and Genetic Medicine

Author(s): Mancini A, Jovanovic DV, He QW, Di Battista JA

Abstract Share this page

Abstract Cyclooxygenase-2 (COX-2) catalyzes the rate-limiting step in inflammatory prostanoid biosynthesis. Transcriptional, post-transcriptional, and post-translational covalent modifications have been defined as important levels of regulation for COX-2 gene expression. Here, we describe a novel regulatory mechanism in primary human cells involving regulated, sequence-specific proteolysis of COX-2 that correlates with its catalytic activity and ultimately, the biosynthesis of prostaglandin E(2) (PGE(2)). Proinflammatory cytokines induced COX-2 expression and its proteolysis into stable immunoreactive fragments of 66, 42-44, 34-36, and 28 kDa. Increased COX-2 activity (PGE(2) release) was observed coincident with the timing and degree of COX-2 proteolysis with correlation analysis confirming a linear relationship (R(2) = 0.941). Inhibition of induced COX-2 activity with non-steroidal anti-inflammatory drugs (NSAIDs) and COX-2 selective inhibitors also abrogated cleavage. To determine if NSAID inhibition of proteolysis was related to drug-binding-induced conformational changes in COX-2, we assayed COX-inactive NSAID derivatives that fail to bind COX-2. Interestingly, these compounds suppressed COX-2 activity and cleavage in a correlated manner, thus suggesting that the observed NSAID-induced inhibition of COX-2 cleavage occurred through COX-independent mechanisms, presumably through the inhibition of proteases involved in COX-2 processing. Corroborating this observation, COX-2 cleavage and activity were mutually suppressed by calpain/cathepsin protease inhibitors. Our data suggest that the nascent intracellular form of COX-2 may undergo limited proteolysis to attain full catalytic capacity. This article was published in J Cell Biochem and referenced in Journal of Molecular and Genetic Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version