alexa Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus.
Environmental Sciences

Environmental Sciences

Journal of Biodiversity & Endangered Species

Author(s): Lee KW, Shim WJ, Kwon OY, Kang JH

Abstract Share this page

Abstract We investigated the effects of three sizes of polystyrene (PS) microbeads (0.05, 0.5, and 6-μm diameter) on the survival, development, and fecundity of the copepod Tigriopus japonicus using acute and chronic toxicity tests. T. japonicus ingested and egested all three sizes of PS beads used and exhibited no selective feeding when phytoplankton were added. The copepods (nauplius and adult females) survived all sizes of PS beads and the various concentrations tested in the acute toxicity test for 96 h. In the two-generation chronic toxicity test, 0.05-μm PS beads at a concentration greater than 12.5 μg/mL caused the mortality of nauplii and copepodites in the F0 generation and even triggered mortality at a concentration of 1.25 μg/mL in the next generation. In the 0.5-μm PS bead treatment, despite there being no significant effect on the F0 generation, the highest concentration (25 μg/mL) induced a significant decrease in survival compared with the control population in the F1 generation. The 6-μm PS beads did not affect the survival of T. japonicus over two generations. The 0.5- and 6-μm PS beads caused a significant decrease in fecundity at all concentrations. These results suggest that microplastics such as micro- or nanosized PS beads may have negative impacts on marine copepods. This article was published in Environ Sci Technol and referenced in Journal of Biodiversity & Endangered Species

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version