alexa SK3-1C, a dominant-negative suppressor of SKCa and IKCa channels.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): KolskiAndreaco A, Tomita H, Shakkottai VG, Gutman GA, Cahalan MD,

Abstract Share this page

Abstract Small conductance Ca2+-activated K+ channels, products of the SK1-SK3 genes, regulate membrane excitability both within and outside the nervous system. We report the characterization of a SK3 variant (SK3-1C) that differs from SK3 by utilizing an alternative first exon (exon 1C) in place of exon 1A used by SK3, but is otherwise identical to SK3. Quantitative RT-PCR detected abundant expression of SK3-1C transcripts in human lymphoid tissues, skeletal muscle, trachea, and salivary gland but not the nervous system. SK3-1C did not produce functional channels when expressed alone in mammalian cells, but suppressed SK1, SK2, SK3, and IKCa1 channels, but not BKCa or KV channels. Confocal microscopy revealed that SK3-1C sequestered SK3 protein intracellularly. Dominant-inhibitory activity of SK3-1C was not due to a nonspecific calmodulin sponge effect since overexpression of calmodulin did not reverse SK3-1C-mediated intracellular trapping of SK3 protein, and calmodulin-Ca2+-dependent inactivation of CaV channels was not affected by SK3-1C overexpression. Deletion analysis identified a dominant-inhibitory segment in the SK3-1C C terminus that resembles tetramerization-coiled-coiled domains reported to enhance tetramer stability and selectivity of multimerization of many K+ channels. SK3-1C may therefore suppress calmodulin-gated SKCa/IKCa channels by trapping these channel proteins intracellularly via subunit interactions mediated by the dominant-inhibitory segment and thereby reduce functional channel expression on the cell surface. Such family-wide dominant-negative suppression by SK3-1C provides a powerful mechanism to titrate membrane excitability and is a useful approach to define the functional in vivo role of these channels in diverse tissues by their targeted silencing. This article was published in J Biol Chem and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords