alexa Slow component of VO2 kinetics: mechanistic bases and practical applications.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Sports Medicine & Doping Studies

Author(s): Jones AM, Grassi B, Christensen PM, Krustrup P, Bangsbo J,

Abstract Share this page

Abstract The V·O₂ slow component, a slowly developing increase in V·O₂ during constant-work-rate exercise performed above the lactate threshold, represents a progressive loss of skeletal muscle contractile efficiency and is associated with the fatigue process. This brief review outlines the current state of knowledge concerning the mechanistic bases of the V·O₂ slow component and describes practical interventions that can attenuate the slow component and thus enhance exercise tolerance. There is strong evidence that, during constant-work-rate exercise, the development of the V·O₂ slow component is associated with the progressive recruitment of additional (type II) muscle fibers that are presumed to have lower efficiency. Recent studies, however, indicate that muscle efficiency is also lowered (resulting in a "mirror-image" V·O₂ slow component) during fatiguing, high-intensity exercise in which additional fiber recruitment is unlikely or impossible. Therefore, it seems that muscle fatigue underpins the V·O₂ slow component, although the greater fatigue sensitivity of recruited type II fibers might still play a crucial role in the loss of muscle efficiency in both situations. Several interventions can reduce the magnitude of the V·O₂ slow component, and these are typically associated with an enhanced exercise tolerance. These include endurance training, inspiratory muscle training, priming exercise, dietary nitrate supplementation, and the inspiration of hyperoxic gas. All of these interventions reduce muscle fatigue development either by improving muscle oxidative capacity and thus metabolic stability or by enhancing bulk muscle O2 delivery or local Q·O₂-to-V·O₂ matching. Future honing of these interventions to maximize their impact on the V·O₂ slow component might improve sports performance in athletes and exercise tolerance in the elderly or in patient populations. This article was published in Med Sci Sports Exerc and referenced in Journal of Sports Medicine & Doping Studies

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords