alexa Small fish models for identifying and assessing the effects of endocrine-disrupting chemicals.
Agri and Aquaculture

Agri and Aquaculture

Journal of Marine Science: Research & Development

Author(s): Ankley GT, Johnson RD

Abstract Share this page

Endocrine-disrupting chemicals (EDCs), particularly those that affect the hypothalamic-pituitary-gonadal (HPG) axis of vertebrates, have become a focus of regulatory screening and testing throughout the world. Small fish species, principally the fathead minnow (Pimephales promelas), Japanese medaka (Oryzias latipes), and zebrafish (Danio rerio), are used as model organisms for several of these testing programs. Fish are appropriate models for testing EDCs, not only from the perspective of existing ecological impacts, but also in terms of species extrapolation. Specifically, there is a significant degree of conservation of basic aspects of the HPG axis across vertebrates, which provides a technically robust basis for using results from fish tests to predict likely modes/mechanisms of action of potential EDCs in other vertebrates. Different experimental designs/endpoints for partial- and full-life cycle tests with fish that enable a consideration of a broad range of EDCs are described. Examples of results with specific chemicals in tests with the fathead minnow, medaka, and zebrafish are presented and discussed in terms of sensitivity and specificity for different classes of EDCs.

  • To read the full article Visit
  • Open Access
This article was published in ILAR J and referenced in Journal of Marine Science: Research & Development

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords