alexa Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells.


Journal of Cell Signaling

Author(s): Kopp JL, Ormsbee BD, Desler M, Rizzino A, Kopp JL, Ormsbee BD, Desler M, Rizzino A, Kopp JL, Ormsbee BD, Desler M, Rizzino A

Abstract Share this page

Abstract Previous studies have demonstrated that the transcription factor Sox2 is essential during the early stages of development. Furthermore, decreasing the expression of Sox2 severely interferes with the self-renewal and pluripotency of embryonic stem (ES) cells. Other studies have shown that Sox2, in conjunction with the transcription factor Oct-3/4, stimulates its own transcription as well as the expression of a growing list of genes (Sox2:Oct-3/4 target genes) that require the cooperative action of Sox2 and Oct-3/4. Remarkably, recent studies have shown that overexpression of Sox2 decreases expression of its own gene, as well as four other Sox2:Oct-3/4 target genes (Oct-3/4, Nanog, Fgf-4, and Utf1). This finding led to the prediction that overexpression of Sox2 in ES cells would trigger their differentiation. In the current study, we initially engineered mouse ES cells for inducible overexpression of Sox2. Using this model system, we demonstrate that small increases (twofold or less) in Sox2 protein trigger the differentiation of ES cells into cells that exhibit markers for a wide range of differentiated cell types, including neuroectoderm, mesoderm, and trophectoderm but not endoderm. We also demonstrate that elevating the levels of Sox2 quickly downregulates several developmentally regulated genes, including Nanog, and a newly identified Sox2:Oct-3/4 target gene, Lefty1. Together, these data argue that the self-renewal of ES cells requires that Sox2 levels be maintained within narrow limits. Thus, Sox2 appears to function as a molecular rheostat that controls the expression of a critical set of embryonic genes, as well as the self-renewal and differentiation of ES cells. This article was published in Stem Cells and referenced in Journal of Cell Signaling

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version