alexa Small intestinal submucosa gel as a potential scaffolding material for cardiac tissue engineering.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Crapo PM, Wang Y

Abstract Share this page

Abstract Cardiac tissue engineering typically utilizes protein-rich scaffolding materials and growth factors to improve cardiac tissue function in vitro and in vivo. The objectives of this preliminary study were (i) to investigate the potential of porcine small intestinal submucosa gel (SIS gel) in cardiac tissue engineering and (ii) to compare the function of tissues based on either SIS gel or Matrigel, a tumor-derived benchmark material. Neonatal rat cardiac cells were combined with either SIS gel or Matrigel and cultured on porous elastomeric scaffolds composed of poly(glycerol sebacate) for 13days. Tissue function was assessed by measuring contraction rates twice daily. Tissue morphology was compared qualitatively by hematoxylin and eosin staining. Normalized troponin T expression (troponin T:DNA) was compared using image analysis. SIS gel constructs contracted at significantly higher rates than Matrigel constructs on days 8-11. Normalized troponin T expression was significantly higher in SIS gel constructs compared with Matrigel constructs. In summary, this research demonstrated that: (i) SIS gel can be used to create contractile engineered cardiac tissue; (ii) SIS gel produced engineered cardiac tissues with a more physiological contraction rate and higher phenotypic protein expression based on the basic in vitro examinations performed in this study. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
This article was published in Acta Biomater and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version