alexa Small-sample inference for incomplete longitudinal data with truncation and censoring in tumor xenograft models.
Mathematics

Mathematics

Journal of Biometrics & Biostatistics

Author(s): Tan M, Fang HB, Tian GL, Houghton PJ

Abstract Share this page

Abstract In cancer drug development, demonstrating activity in xenograft models, where mice are grafted with human cancer cells, is an important step in bringing a promising compound to humans. A key outcome variable is the tumor volume measured in a given period of time for groups of mice given different doses of a single or combination anticancer regimen. However, a mouse may die before the end of a study or may be sacrificed when its tumor volume quadruples, and its tumor may be suppressed for some time and then grow back. Thus, incomplete repeated measurements arise. The incompleteness or missingness is also caused by drastic tumor shrinkage (<0.01 cm3) or random truncation. Because of the small sample sizes in these models, asymptotic inferences are usually not appropriate. We propose two parametric test procedures based on the EM algorithm and the Bayesian method to compare treatment effects among different groups while accounting for informative censoring. A real xenograft study on a new antitumor agent, temozolomide, combined with irinotecan is analyzed using the proposed methods.
This article was published in Biometrics and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords