alexa Sodium tungstate activates glycogen synthesis through a non-canonical mechanism involving G-proteins.


Journal of Clinical & Cellular Immunology

Author(s): Zafra D, Nocito L, Domnguez J, Guinovart JJ

Abstract Share this page

Abstract Tungstate treatment ameliorates experimental diabetes by increasing liver glycogen deposition through an as yet unidentified mechanism. The signalling mechanism of tungstate was studied in CHOIR cells and primary cultured hepatocytes. This compound exerted its pro-glycogenic effects through a new G-protein-dependent and Tyr-Kinase Receptor-independent mechanism. Chemical or genetic disruption of G-protein signalling prevented the activation of the Ras/ERK cascade and the downstream induction of glycogen synthesis caused by tungstate. Thus, these findings unveil a novel non-canonical signalling pathway that leads to the activation of glycogen synthesis and that could be exploited as an approach to treat diabetes. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. This article was published in FEBS Lett and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version