alexa Solubilization of hyaluronic acid synthetic activity from streptococci and its activation with phospholipids.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Triscott MX, van de Rijn I

Abstract Share this page

Abstract To date all hyaluronic acid synthetic systems have been of a particulate nature, and attempts at solubilization have been unsuccessful. This has hampered attempts to elucidate the mechanism by which hyaluronic acid is produced. In this paper we demonstrate that the hyaluronic acid synthetic activity from group C streptococcal membranes was solubilized using 2\% digitonin and that the activity was optimized by reconstitution with cardiolipin at an optimum phospholipid/protein ratio (microgram/microgram) of 5:1. Furthermore, chromatography of the solubilized synthetase demonstrated that it eluted after the void volume of a Sepharose CL-6B column. CHAPSO, octyl glucopyranoside, sodium cholate, Triton X-100, and zwittergent 314 either inhibited or failed to solubilize the synthetic activity. Phospholipids other than cardiolipin also reconstituted the activity from the digitonin extract, particularly phosphatidylethanolamine and phosphatidylserine. In our system, the specific activity of hyaluronic acid synthetase was increased up to 63 times that of the system of the intact membrane. Furthermore, the total activity of the reconstituted system was 4.9 times greater than that of intact membranes. The soluble enzyme system showed similarities to the membrane-bound synthetase in the kinetics of production of trichloroacetic acid-soluble and -insoluble hyaluronic acid, and the hyaluronic acid produced was of comparable molecular weight.
This article was published in J Biol Chem and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd International Conference on Transcriptomics
    October 30 - November 01, 2017 Bangkok, Thailand

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords