alexa Sorption interactions between imazaquin and a humic acid extracted from a typical Brazilian oxisol.


Journal of Environmental Analytical Chemistry

Author(s): Ferreira JA, MartinNeto L, Vaz CM, Regitano JB

Abstract Share this page

Abstract Soil sorption of most hydrophobic organic compounds (e.g., nonpolar pesticides) is directly related to soil organic matter (SOM) content. Humic substances are the major SOM components, containing carboxylic, phenolic, amine, quinone, and other functional groups, and specific structural configurations. In this paper, sorption interactions between imazaquin (2-[4,5-dydro-4-methyl-4-(1-methylethyl)-5-oxo-1H- imidazol-2-yl]-3-quinoline-carboxylic acid) herbicide (IM) and a humic acid (HA) extracted from a typical Brazilian Oxisol were studied with electron paramagnetic resonance (EPR) and Fourier-transform infrared (FTIR) spectroscopic techniques. A polarographic technique was used to quantify sorption. The IM amount sorbed on the HA was much higher than that on the whole soil within the pH range studied, emphasizing the prominent role played by SOM on IM sorption. Moreover, IM sorption increased as the soil-solution pH decreased. This enhancement in sorption was attributed to the hydrophobic affinity of the herbicide by the HA and to the electrostatic interaction between the protonated quinoline group of IM and the negative sites of the HA. Hydrophobic regions in the HA's interior at low pH (< 5.0) were recently demonstrated by an EPR detectable spin-label molecule. The FTIR and EPR spectroscopy and polarography data indicated weak interaction between IM and the soil and its HA, involving hydrogen bonding, proton transfer, and cation exchange (at low pH), and mainly hydrophobic interactions. However, no strong reaction mechanism, such as charge transfer, was involved. In addition, this research suggested that soil amendment with organic material might increase magnitude of IM sorption, consequently avoiding leaching and carryover problems usually found for mobile and persistent herbicides such as imazaquin.
This article was published in J Environ Qual and referenced in Journal of Environmental Analytical Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version