alexa Soybean phytochemicals inhibit the growth of transplantable human prostate carcinoma and tumor angiogenesis in mice.
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): Zhou JR, Gugger ET, Tanaka T, Guo Y, Blackburn GL, , Zhou JR, Gugger ET, Tanaka T, Guo Y, Blackburn GL,

Abstract Share this page

Abstract The objectives of our studies are to characterize the ability of dietary soybean components to inhibit the growth of prostate cancer in mice and alter tumor biomarkers associated with angiogenesis. Soy isoflavones (genistein or daidzein) or soy phytochemical concentrate inhibit the growth of prostate cancer cells LNCaP, DU 145 and PC-3 in vitro, but only at supraphysiologic concentrations, i.e., 50\% inhibitory concentration (IC(50)) > 50 micromol/L. G2-M arrest and DNA fragmentation consistent with apoptosis of prostate cancer cells are also observed at concentrations causing growth inhibition. In contrast, the in vitro proliferation of vascular endothelial cells was inhibited by soy phytochemcials at much lower concentrations. We evaluated the ability of dietary soy phytochemical concentrate and soy protein isolate to inhibit the growth of the LNCaP human prostate cancer in severe combined immune-deficient mice. Mice inoculated subcutaneously with LNCaP cells (2 x 10(6)) were randomly assigned to one of the six dietary groups based on the AIN-76A formulation for 3 wk. A 2 x 3 factorial design was employed with two protein sources (20\%, casein vs. soy protein) and three levels of soy phytochemical concentrate (0, 0.2 and 1.0\% of the diet). Soy components did not alter body weight gain or food intake. Compared with casein-fed controls, the tumor volumes after 3 wk were reduced by 11\% (P = 0.45) by soy protein, 19\% (P = 0.17) by 0.2\% soy phytochemical concentrate, 28\% by soy protein with 0.2\% soy phytochemical concentrate (P < 0.05), 30\% by 1.0\% soy phytochemical concentrate (P < 0.05) and 40\% by soy protein with 1.0\% soy phytochemical concentrate (P < 0.005). Histologic examination of tumor tissue showed that consumption of soy products significantly reduced tumor cell proliferation, increased apoptosis and reduced microvessel density. The angiogenic protein insulin-like growth factor-I was reduced in the circulation of mice fed soy protein and phytochemical concentrate. Our data suggest that dietary soy products may inhibit experimental prostate tumor growth through a combination of direct effects on tumor cells and indirect effects on tumor neovasculature.
This article was published in J Nutr and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

geneticsmolb[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords