alexa Speaking mode recognition from functional Near Infrared Spectroscopy.
Engineering

Engineering

Journal of Biomimetics Biomaterials and Tissue Engineering

Author(s): Herff C, Putze F, Heger D, Guan C, Schultz T

Abstract Share this page

Abstract Speech is our most natural form of communication and even though functional Near Infrared Spectroscopy (fNIRS) is an increasingly popular modality for Brain Computer Interfaces (BCIs), there are, to the best of our knowledge, no previous studies on speech related tasks in fNIRS-based BCI. We conducted experiments on 5 subjects producing audible, silently uttered and imagined speech or do not produce any speech. For each of these speaking modes, we recorded fNIRS signals from the subjects performing these tasks and distinguish segments containing speech from those not containing speech, solely based on the fNIRS signals. Accuracies between 69\% and 88\% were achieved using support vector machines and a Mutual Information based Best Individual Feature approach. We are also able to discriminate the three speaking modes with 61\% classification accuracy. We thereby demonstrate that speech is a very promising paradigm for fNIRS based BCI, as classification accuracies compare very favorably to those achieved in motor imagery BCIs with fNIRS. This article was published in Conf Proc IEEE Eng Med Biol Soc and referenced in Journal of Biomimetics Biomaterials and Tissue Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords