alexa Species and site differences in the decomposition of litters and roots from wet heathlands
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): M M I Van Vuuren, W De Visser, F Berendse

Abstract Share this page

The decomposition of litter and roots from a site dominated by Erica tetralix and a site dominated by Molinia caerulea was measured using mesh bags. Leaf litter and roots of each species were incubated on both sites. The experiments lasted up to 3 years. The weighted decomposition constant was 0.23 per year for Molinia litter, and 0.10 per year for Erica litter; the decomposition constants for roots were 0.29 per year for Molinia but only 0.03 per year for Erica. The decomposition rates of leaf litters and roots were similar on both sites, and the chemical composition of the materials determined the decomposition rate. Litters and roots with high lignin concentrations decomposed slowly. During the experiments, most materials showed a net retention of N and P. Large net N releases were measured only for Molinia roots and basal internodes, and a large net P release was measured only for Molinia roots. It was concluded that the rate of accumulation of soil organic matter per gram of plant debris is slower on the site dominated by Molinia than on the site dominated by Erica. In the long term, N and P are probably released faster from Molinia than from Erica plant debris. Key words: decomposition, heathlands, Molinia, Erica.

This article was published in Canadian Journal of Botany and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords