alexa Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal Haustorium renders broad-spectrum resistance to powdery mildew.
Genetics & Molecular Biology

Genetics & Molecular Biology

Gene Technology

Author(s): Wang W, Wen Y, Berkey R, Xiao S

Abstract Share this page

Abstract Powdery mildew fungal pathogens penetrate the plant cell wall and develop a feeding structure called the haustorium to steal photosynthetate from the host cell. Here, we report that the broad-spectrum mildew resistance protein RPW8.2 from Arabidopsis thaliana is induced and specifically targeted to the extrahaustorial membrane (EHM), an enigmatic interfacial membrane believed to be derived from the host cell plasma membrane. There, RPW8.2 activates a salicylic acid (SA) signaling-dependent defense strategy that concomitantly enhances the encasement of the haustorial complex and onsite accumulation of H(2)O(2), presumably for constraining the haustorium while reducing oxidative damage to the host cell. Targeting of RPW8.2 to the EHM, however, is SA independent and requires function of the actin cytoskeleton. Natural mutations that impair either defense activation or EHM targeting of RPW8.2 compromise the efficacy of RPW8.2-mediated resistance. Thus, the interception of haustoria is key for RPW8-mediated broad-spectrum mildew resistance.
This article was published in Plant Cell and referenced in Gene Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd International Conference and Expo on Generic Drug Market and Contract Manufacturing
    September 25-26, 2017 Frankfurt, Germany
  • 6th International Conference and Exhibition on Cell and Gene Therapy
    Mar 27-28, 2017 Madrid, Spain
  • 2nd World Congress on Human Genetics & Genetic Disorders
    November 02-03, 2017 Toronto, Canada

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version