alexa Specificity and commonality of the phosphoinositide-binding proteome analyzed by quantitative mass spectrometry.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Jungmichel S, Sylvestersen KB, Choudhary C, Nguyen S, Mann M

Abstract Share this page

Abstract Phosphoinositides (PIPs) play key roles in signaling and disease. Using high-resolution quantitative mass spectrometry, we identified PIP-interacting proteins and profiled their binding specificities toward all seven PIP variants. This analysis revealed 405 PIP-binding proteins, which is greater than the total number of phospho- or ubiquitin-binding domains. Translocation and inhibitor assays of identified PIP-binding proteins confirmed that our methodology targets direct interactors. The PIP interactome encompasses proteins from diverse cellular compartments, prominently including the nucleus. Our data set revealed a consensus motif for PI(3,4,5)P3-interacting pleckstrin homology (PH) domains, which enabled in silico identification of phosphoinositide interactors. Members of the dedicator of cytokinesis family C exhibited specificity toward both PI(3,4,5)P3 and PI(4,5)P2. Structurally, this dual specificity is explained by a decreased number of positively charged residues in the L1 subdomain compared with DOCK1. The presented PIP-binding proteome and its specificity toward individual PIPs should be a valuable resource for the community. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

This article was published in Cell Rep and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords