alexa Spectroscopic and kinetic properties of the oxidized intermediates of lignin peroxidase from Phanerochaete chrysosporium.
Chemistry

Chemistry

Journal of Environmental Analytical Chemistry

Author(s): Marquez L, Wariishi H, Dunford HB, Gold MH

Abstract Share this page

Abstract Stopped-flow rapid scan techniques were used to obtain a spectrum of nearly homogeneous lignin peroxidase compound I (LiPI) under pseudo-first order conditions at the unusually low pH optimum (3.0) for the enzyme. The LiPI spectrum had a Soret band at 407 nm with approximately 60\% reduced intensity and a visible maximum at 650 nm. Under steady-state conditions a Soret spectrum for lignin peroxidase compound II (LiPII) was also obtained. The Soret maximum of LiPII at 420 nm was only approximately 15\% reduced in intensity compared to native LiP. Transient state kinetic results confirmed the pH independence of LiPI formation over the pH range 3.06-7.39. The rate constant was (6.5 +/- 0.2) x 10(5) M-1 S-1. Addition of excess veratryl alcohol to LiPI resulted in its reduction to LiPII with subsequent reduction of LiPII to the native enzyme. Reactions of LiPI and LiPII with veratryl alcohol exhibited marked pH dependencies. For the LiPI reaction the rate constants ranged from 2.5 x 10(6) M-1 S-1 at pH 3.06 to 4.1 x 10(3) M-1 S-1 at pH 7.39; for the LiPII reaction, 1.6 x 10(5) M-1 S-1 (pH 3.06) to 2.3 x 10(3) M-1 S-1 (pH 5.16). These single turnover experiments demonstrate directly that the pH dependence of these reactions dictates the overall pH dependence of this novel enzyme. These results are consistent with the one-electron oxidation of veratryl alcohol to an aryl cation radical by LiPI and by LiPII.
This article was published in J Biol Chem and referenced in Journal of Environmental Analytical Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords