alexa Speeding up backpropagation using multiobjective evolutionary algorithms.
Engineering

Engineering

International Journal of Swarm Intelligence and Evolutionary Computation

Author(s): Abbass HA, Abbass HA, Abbass HA, Abbass HA

Abstract Share this page

Abstract The use of backpropagation for training artificial neural networks (ANNs) is usually associated with a long training process. The user needs to experiment with a number of network architectures; with larger networks, more computational cost in terms of training time is required. The objective of this letter is to present an optimization algorithm, comprising a multiobjective evolutionary algorithm and a gradient-based local search. In the rest of the letter, this is referred to as the memetic Pareto artificial neural network algorithm for training ANNs. The evolutionary approach is used to train the network and simultaneously optimize its architecture. The result is a set of networks, with each network in the set attempting to optimize both the training error and the architecture. We also present a self-adaptive version with lower computational cost. We show empirically that the proposed method is capable of reducing the training time compared to gradient-based techniques. This article was published in Neural Comput and referenced in International Journal of Swarm Intelligence and Evolutionary Computation

Relevant Expert PPTs

Recommended Conferences

  • 3rd International Conference on Data Structures and Data Mining
    August 17-18, 2017, Toronto, Canada
  • 4th International Conference on BigData Analysis and Data Mining
    September 07-08, 2017, Paris, France
  • 6th International Conference on Biostatistics and Bioinformatics
    Nov 13-14, 2017, Atlanta, USA
  • 4th World Congress on Robotics and Artificial Intelligence
    October 23-24, 2017

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords