alexa Sperm cryopreservation in fish and shellfish.
Agri and Aquaculture

Agri and Aquaculture

Poultry, Fisheries & Wildlife Sciences

Author(s): Tiersch TR, Yang H, Jenkins JA, Dong Q

Abstract Share this page

Abstract Initial success in sperm cryopreservation came at about the same time for aquatic species and livestock. However, in the 50-plus years since then cryopreserved sperm of livestock has grown into a billion-dollar global industry, while despite work in some 200 species with well over 200 published reports, cryopreservation of aquatic species sperm remains essentially a research activity with little commercial application. Most research has focused on large-bodied culture and sport fishes, such as salmonids, carps, and catfishes, and mollusks such as commercially important oyster and abalone species. However, only a handful of studies have addressed sperm cryopreservation in small fishes, such as zebrafish, and in endangered species. Overall, this work has yielded techniques that are being applied with varying levels of success around the world. Barriers to expanded application include a diverse and widely distributed literature base, technical problems, small sperm volumes, variable results, a general lack of access to the technology, and most importantly, the lack of standardization in practices and reporting. The benefits of cryopreservation include at least five levels of improvements for existing industries and for creation of new industries. First, cryopreservation can be used to improve existing hatchery operations by providing sperm on demand and simplifying the timing of induced spawning. Second, frozen sperm can enhance efficient use of facilities and create new opportunities in the hatchery by eliminating the need to maintain live males, potentially freeing resources for use with females and larvae. Third, valuable genetic lineages such as endangered species, research models, or improved farmed strains can be protected by storage of frozen sperm. Fourth, cryopreservation opens the door for rapid genetic improvement. Frozen sperm can be used in breeding programs to create improved lines and shape the genetic resources available for aquaculture. Finally, cryopreserved sperm of aquatic species will at some point become an entirely new industry itself. A successful industry will require integrated practices for sample collection, refrigerated storage, freezing, thawing, rules for use and disposal, transfer agreements, and database development. Indeed the development of this new industry is currently constrained by factors including the technical requirements for scaling-up to commercial operations during the transition from research, and the absence of uniform quality control practices, industry standards, marketing and price structures, and appropriate biosecurity safeguards.
This article was published in Soc Reprod Fertil Suppl and referenced in Poultry, Fisheries & Wildlife Sciences

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords