alexa Sphere formation restores and confers hair-inducing capacity in cultured mesenchymal cells.
Dermatology

Dermatology

Hair Therapy & Transplantation

Author(s): Shimizu R, Okabe K, Kubota Y, NakamuraIshizu A, Nakajima H,

Abstract Share this page

Abstract Interactions between epithelial and dermal cells are essential for hair follicle morphogenesis and maintenance. In experimental trials of hair regeneration, isolated dermal cells have been shown to possess hair-inducing capacity. However, dermal cells lose this potential immediately after cultivation. Sphere-forming multipotent cells derived from the dermis possess hair-inducing capacity. These previous findings raise the question of whether hair-inducing capacity depends on the identity as dermal cells or the process of sphere formation. To address this issue, we compared the in vitro and in vivo characteristics of two-dimensionally cultured or thereafter sphere formation-induced dermal and lung mesenchymal cells. We show that sphere-forming mesenchymal cells exhibited higher expression of Wnt signalling genes. Sphere-forming cells but not two-dimensionally cultured cells possessed in vivo hair-inducing capacity. These data suggest that various mesenchymal cells attain hair-inducing capacity through the process of sphere formation. © 2011 John Wiley & Sons A/S. This article was published in Exp Dermatol and referenced in Hair Therapy & Transplantation

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_pol[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords