alexa Spore heat resistance and specific mineralization.
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutica Analytica Acta

Author(s): Bender GR, Marquis RE

Abstract Share this page

Abstract Spores of Bacillus megaterium ATCC 19213, Bacillus subtilis niger and Bacillus stearothermophilus ATCC 7953 were converted to fully demineralized, but viable, H forms by controlled acid titration. H forms were more heat sensitive than were native forms, but z values were greater for killing of H spores than those for native spores. Therefore, the differences in heat sensitivity between native and H forms decreased with increasing killing temperature. The increase in heat sensitivity associated with demineralization did not appear to be due to damage to cortex lytic enzymes of the germination system because it could not be moderated by decoating heated H spores and plating them on medium with added lysozyme. H spores could be remineralized by means of back titration with appropriate base solutions. The remineralized spores, except for the Na form, were then more heat resistant than were H spores. Ca and Mn were more effective in restoring resistance than were Mg and K. Generally, the remineralized forms (except for the Na form) had z values greater than those of the native forms but still less than those of the H forms. At lower killing temperatures, the reinstatement of resistance could be related to the extent of remineralization. However, at higher killing temperatures, only a fraction of the mineral was effective in restoring resistance, and higher levels of remineralization did not result in greater resistance. Mineralization is clearly an important factor in spore heat resistance, but the relationship between resistance and mineralization is complex and dependent on killing temperature.
This article was published in Appl Environ Microbiol and referenced in Pharmaceutica Analytica Acta

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords