alexa Staphylococcus aureus accessory gene regulator (agr) group II: is there a relationship to the development of intermediate-level glycopeptide resistance?
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Sakoulas G, Eliopoulos GM, Moellering RC Jr, Novick RP, Venkataraman L,

Abstract Share this page

Abstract We previously determined that all 6 Staphylococcus aureus strains with confirmed intermediate-level resistance to glycopeptides (glycopeptide intermediate S. aureus [GISA]) from the United States that we tested belonged to accessory gene regulator (agr) group II. In the present study, we found that 56\% of surveyed bloodstream methicillin-resistant S. aureus isolates (n = 148) at our hospital were agr group II, whereas only 24\% of methicillin-susceptible S. aureus isolates (n = 33) were agr group II (P = .001). Population analysis of genetically engineered agr-null and parent wild-type strains of groups I, II, and IV revealed that, when agr function is lost, the agr group II knockout S. aureus was most likely to develop glycopeptide heteroresistance after growth in 1 microg/mL but not 16 microg/mL vancomycin. This strain was unique in showing decreased autolysis after growth in these conditions. This study suggests that some S. aureus strains have an intrinsic survival advantage under a glycopeptide selective pressure, which is possibly related to reduced autolysis after exposure to subinhibitory concentrations of glycopeptide. This article was published in J Infect Dis and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords