alexa Statistical design of experiments as a tool for optimizing the batch conditions to Cr(VI) biosorption on Araucaria angustifolia wastes.
Chemical Engineering

Chemical Engineering

Journal of Advanced Chemical Engineering

Author(s): Brasil JL, Ev RR, Milcharek CD, Martins LC, Pavan FA,

Abstract Share this page

Abstract In order to reduce the total number of experiments for achieving the best conditions for Cr(VI) uptake using Araucaria angustifolia (named pinhão) wastes as a biosorbent, three statistical design of experiments were carried out. A full 2(4) factorial design with two blocks and two central points (20 experiments) was experimented (pH, initial metallic ion concentration-C(o), biosorbent concentration-X and time of contact-t), showing that all the factors were significant; besides, several interactions among the factors were also significant. These results led to the performance of a Box-Behnken surface analysis design with three factors (X, C(o) and t) and three central points and just one block (15 experiments). The performance of these two statistical designs of experiments led to the best conditions for Cr(VI) biosorption on the pinhão wastes using a batch system, where: pH 2.0; C(o) = 1200 mg l(-1) Cr(VI); X = 1.5 g l(-1) of biosorbent; t = 8 h. The maximum Cr(VI) uptake in these conditions was 125 mg g(-1). After evaluating the best Cr(VI) biosorption conditions on pinhão wastes, a new Box-Behnken surface analysis design was employed in order to verify the effects of three concomitant ions (Cl(-), NO(3)(-) and PO(4)(3-)) on the biosorption of Cr(VI) as a dichromate on the biosorbent (15 experiments). These results showed that the tested anions did not show any significant effect on the Cr(VI) uptake by pinhão wastes. In order to evaluate the pinhão wastes as a biosorbent in dynamic system, a glass column was fulfilled with pinhão wastes (4.00 g) as biosorbent, and it was fed with 25.0 mg l(-1) Cr(VI) at pH 2.0 and 2.5 ml min(-1). The breakpoint was attained when concentrations of effluent of the column attained the value of 0.05 mg l(-1) Cr(VI) using 5550 ml of the metallic ion solution. In these conditions, the biosorbent was able to remove completely Cr(VI) from aqueous solution with a ratio of Cr(VI) effluent volume/biosorbent volume of 252.3. This article was published in J Hazard Mater and referenced in Journal of Advanced Chemical Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords