alexa Statistical mechanics of scale-free networks at a critical point: complexity without irreversibility?


Industrial Engineering & Management

Author(s): Biely C, Thurner S

Abstract Share this page

Abstract Based on a rigorous extension of classical statistical mechanics to networks, we study a specific microscopic network Hamiltonian. The form of this Hamiltonian is derived from the assumption that individual nodes increase or decrease their utility by linking to nodes with a higher or lower degree than their own. We interpret utility as an equivalent to energy in physical systems and discuss the temperature dependence of the emerging networks. We observe the existence of a critical temperature Tc where total energy (utility) and network architecture undergo radical changes. Along this topological transition we obtain ensemble averages of scale-free networks with complex hierarchical topology. The scale-free nature emerges strictly within equilibrium, with a clearly defined microcanonical ensemble and the principle of detailed balance fulfilled. This provides evidence that "complex" networks may arise without irreversibility. The utility approach establishes a link between classical statistical physics and a wide variety of applications in socioeconomic statistical systems. This article was published in Phys Rev E Stat Nonlin Soft Matter Phys and referenced in Industrial Engineering & Management

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version