alexa Steady-state and time-resolved fluorescence of Esperase: comparison with the X-ray structure in the region of the two tryptophans.
Dentistry

Dentistry

Dentistry

Author(s): Georgieva DN, Nikolov P, Betzel C

Abstract Share this page

Abstract Fluorescence emission properties of the alkaline protease Esperase have been investigated using steady-state and time-resolved fluorescence spectroscopy. The local polarity and solvent accessibility of the tryptophyl chromophores is characterized. Quenching studies demonstrated that Trp 6 and Trp 113 are 'buried' to acrylamide, iodide ions and caesium ions. An abnormally low tryptophan quantum yield was calculated showing that the emission of the two indole rings is significantly quenched by nearby side chains or peptide bonds. The fluorescence decay of PMS-Esperase was well fitted by two exponentials with lifetimes of 2.7 and 0.35 ns. X-ray data for Esperase (S. Klupsch, Ph.D. Thesis, University of Hamburg, Hamburg, Germany) in the region of the two tryptophans were used to explain the observed emission properties. Gln 182 and Asn 204 as well as Asn 117 and Met 119 are the most likely quenchers, respectively, of the Trp 6 and Trp 113 fluorescence. The two tryptophans in Esperase are 'buried' in hydrophobic regions and are excellent intrinsic probes to study folding-unfolding reactions. Experiments in the presence and absence of added calcium ions demonstrated the stabilizing role of the Ca(2+)-binding sites.
This article was published in Spectrochim Acta A Mol Biomol Spectrosc and referenced in Dentistry

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords