alexa STI571 and morpholine derivative of doxorubicin collaborate in inhibition of K562 cell proliferation by inducing differentiation and mitochondrial pathway of apoptosis.
Chemistry

Chemistry

Medicinal Chemistry

Author(s): Jakubowska J, WasowskaLukawska M, Czyz M

Abstract Share this page

Abstract Differentiation therapy is considered as a supplementary approach to the currently applied treatments for leukemia. We have previously shown that a morpholine derivative of doxorubicin (DOXM) appeared to be a more efficient inducer of erythroid differentiation of K562 cells than the parent drug [Czyz, M., Szulawska, A., Bednarek, A.K., Duchler, M., 2005. Effects of anthracycline derivatives on human leukemia K562 cell growth and differentiation. Biochem. Pharmacol. 70, 1431-1442.; Szulawska, A., Arkusinska, J., Czyz, M., 2007. Accumulation of gamma-globin mRNA and induction of irreversible erythroid differentiation after treatment of CML cell line K562 with new doxorubicin derivatives. Biochem. Pharmacol. 73, 175-184.]. In the current study we used this compound in combination with STI571, a front-line drug in therapy of chronic myelogenous leukemia (CML), to evaluate possible benefits of the combined treatment on the cellular level. Using K562 cells, we analyzed the response of CML cells to low concentrations of DOXM when Bcr-Abl activity was reduced to various levels by its specific inhibitor, STI571. Differentiation was significantly enhanced with the combination of 150 nM STI571 and 100 nM DOXM as compared to the levels obtained with either drug alone. A higher concentration of STI571 was required to diminish Bcr-Abl activity to the level which was sufficient to stimulate apoptotic cell death pathway in K562. Apoptosis induced by 250 nM STI571 was markedly enhanced by DOXM in the combined treatment. Mitochondrial transmembrane potential dissipation and translocation of phosphatydylserine to the outer plasma membrane were increased by 50\%. Our results clearly indicate that differentiation and apoptosis, both reducing cellular proliferation, could be substantially enhanced by the combined treatment. We provide experimental evidence implicating that the diversification of cellular effects obtained in the combined treatment employing non-toxic approaches to enhance efficacy of STI571 might be considered as an alternative therapeutic strategy against CML, especially for apoptosis-reluctant cells. This article was published in Eur J Pharmacol and referenced in Medicinal Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords