alexa Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Anderson RT, Vrionis HA, OrtizBernad I, Resch CT, Long PE,

Abstract Share this page

Abstract The potential for removing uranium from contaminated groundwater by stimulating the in situ activity of dissimilatory metal-reducing microorganisms was evaluated in a uranium-contaminated aquifer located in Rifle, Colo. Acetate (1 to 3 mM) was injected into the subsurface over a 3-month period via an injection gallery composed of 20 injection wells, which was installed upgradient from a series of 15 monitoring wells. U(VI) concentrations decreased in as little as 9 days after acetate injection was initiated, and within 50 days uranium had declined below the prescribed treatment level of 0.18 micro M in some of the monitoring wells. Analysis of 16S ribosomal DNA (rDNA) sequences and phospholipid fatty acid profiles demonstrated that the initial loss of uranium from the groundwater was associated with an enrichment of Geobacter species in the treatment zone. Fe(II) in the groundwater also increased during this period, suggesting that U(VI) reduction was coincident with Fe(III) reduction. As the acetate injection continued over 50 days there was a loss of sulfate from the groundwater and an accumulation of sulfide and the composition of the microbial community changed. Organisms with 16S rDNA sequences most closely related to those of sulfate reducers became predominant, and Geobacter species became a minor component of the community. This apparent switch from Fe(III) reduction to sulfate reduction as the terminal electron accepting process for the oxidation of the injected acetate was associated with an increase in uranium concentration in the groundwater. These results demonstrate that in situ bioremediation of uranium-contaminated groundwater is feasible but suggest that the strategy should be optimized to better maintain long-term activity of Geobacter species.
This article was published in Appl Environ Microbiol and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords