alexa Strain Engineered CaBi2Nb2O9 Thin Films with Enhanced Electrical Properties.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Zhang Y, , Ouyang J, , ,

Abstract Share this page

Abstract In this work, strain engineered polycrystalline thin films (∼250 nm) of bismuth layer-structured ferroelectric (BLSF) CaBi2Nb2O9 (CBNO) were prepared by using a radio frequency (RF) magnetron sputtering technique. XRD analysis revealed that the films were (200)/(020) and (00l) textured with a large in-plane tensile stress. Cross-sectional TEM analyses confirmed the bismuth layered-structure, as well as crystalline orientations and a strain-controlled growth mode of the grains. Result of a quantitative XPS analysis revealed that the composition of the film is close to the chemical stoichiometry. Excellent electrical properties were achieved in the CBNO films, including a high dielectric constant (∼280 @5 kHz), a small dielectric loss (tgδ ≤ 1.6\% up to an applied electric field of ∼1200 kV/cm) and a large polarization (Pr ≈ 14 μC/cm(2) @ 1 kHz). This article was published in ACS Appl Mater Interfaces and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords