alexa Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum.
Engineering

Engineering

International Journal of Swarm Intelligence and Evolutionary Computation

Author(s): Haber SN, Fudge JL, McFarland NR

Abstract Share this page

Abstract Clinical manifestations in diseases affecting the dopamine system include deficits in emotional, cognitive, and motor function. Although the parallel organization of specific corticostriatal pathways is well documented, mechanisms by which dopamine might integrate information across different cortical/basal ganglia circuits are less well understood. We analyzed a collection of retrograde and anterograde tracing studies to understand how the striatonigrostriatal (SNS) subcircuit directs information flow between ventromedial (limbic), central (associative), and dorsolateral (motor) striatal regions. When viewed as a whole, the ventromedial striatum projects to a wide range of the dopamine cells and receives a relatively small dopamine input. In contrast, the dorsolateral striatum (DLS) receives input from a broad expanse of dopamine cells and has a confined input to the substantia nigra (SN). The central striatum (CS) receives input from and projects to a relatively wide range of the SN. The SNS projection from each striatal region contains three substantia nigra components: a dorsal group of nigrostriatal projecting cells, a central region containing both nigrostriatal projecting cells and its reciprocal striatonigral terminal fields, and a ventral region that receives a specific striatonigral projection but does not contain its reciprocal nigrostriatal projection. Examination of results from multiple tracing experiments simultaneously demonstrates an interface between different striatal regions via the midbrain dopamine cells that forms an ascending spiral between regions. The shell influences the core, the core influences the central striatum, and the central striatum influences the dorsolateral striatum. This anatomical arrangement creates a hierarchy of information flow and provides an anatomical basis for the limbic/cognitive/motor interface via the ventral midbrain.
This article was published in J Neurosci and referenced in International Journal of Swarm Intelligence and Evolutionary Computation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • International conference on Artificial Intelligence
    June 28-29, 2017, San Diego, USA
  • 3rd International Conference on Data Structures and Data Mining
    August 17-18, 2017, Toronto, Canada
  • 4th International Conference on BigData Analysis and Data Mining
    September 07-08, 2017, Paris, France
  • 6th International Conference on Biostatistics and Bioinformatics
    Nov 13-14, 2017, Atlanta, USA
  • 4th World Congress on Robotics and Artificial Intelligence
    October 23-24, 2017

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords