alexa Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium.
Chemical Engineering

Chemical Engineering

Journal of Thermodynamics & Catalysis

Author(s): Russell RJ, Gerike U, Danson MJ, Hough DW, Taylor GL

Abstract Share this page

Abstract BACKGROUND: The structural basis of adaptation of enzymes to low temperature is poorly understood. Dimeric citrate synthase has been used as a model enzyme to study the structural basis of thermostability, the structure of the enzyme from organisms living in habitats at 55 degrees C and 100 degrees C having previously been determined. Here the study is extended to include a citrate synthase from an Antarctic bacterium, allowing us to explore the structural basis of cold activity and thermostability across the whole temperature range over which life is known to exit. RESULTS: We report here the first crystal structure of a cold-active enzyme, citrate synthase, isolated from an Antarctic bacterium, at a resolution of 2.09 A. In comparison with the same enzyme from a hyperthermophilic host, the cold-active enzyme has a much more accessible active site, an unusual electrostatic potential distribution and an increased relative flexibility of the small domain compared to the large domain. Several other features of the cold-active enzyme were also identified: reduced subunit interface interactions with no intersubunit ion-pair networks; loops of increased length carrying more charge and fewer proline residues; an increase in solvent-exposed hydrophobic residues; and an increase in intramolecular ion pairs. CONCLUSIONS: Enzymes from organisms living at the temperature extremes of life need to avoid hot or cold denaturation yet maintain sufficient structural integrity to allow catalytic efficiency. For hyperthermophiles, thermal denaturation of the citrate synthase dimer appears to be resisted by complex networks of ion pairs at the dimer interface, a feature common to other hyperthermophilic proteins. For the cold-active citrate synthase, cold denaturation appears to be resisted by an increase in intramolecular ion pairs compared to the hyperthermophilic enzyme. Catalytic efficiency of the cold-active enzyme appears to be achieved by a more accessible active site and by an increase in the relative flexibility of the small domain compared to the large domain.
This article was published in Structure and referenced in Journal of Thermodynamics & Catalysis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version