alexa Structural and chemical properties of grass lignocelluloses related to conversion for biofuels.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Anderson WF, Akin DE

Abstract Share this page

Abstract Grass lignocelluloses, such as those in corn and switchgrass, are a major resource in the emerging cellulose-to-ethanol strategy for biofuels. The potential bioconversion of carbohydrates in this potential resource, however, is limited by the associated aromatic constituents within the grass fiber. These aromatics include both lignins, which are phenylpropanoid units of various types, and low-molecular weight phenolic acids. Structural and chemical studies over the years have identified the location and limitation to fiber degradation imposed by a variety of these aromatic barriers. For example, coniferyl lignin appears to be the most effective limitation to biodegradation, existing in xylem cells of vascular tissues. On the other hand, cell walls with syringyl lignin, e.g., leaf sclerenchyma, are often less recalcitrant. Ferulic and p-coumaric acids that are esterified to hemicellulosic sugars constitute a major limitation to biodegradation in non-lignified cell walls in grass fibers, especially warm season species. Non-chemical methods to improve bioconversion of the lignocelluloses through modification of aromatics include: (1) use of lignin-degrading white rot fungi, (2) pretreatment with phenolic acid esterases, and (3) plant breeding to modify cell wall aromatics. In addition to increased availability of carbohydrates for fermentation, separation and collection of aromatics could provide value-added co-products to improve the economics of bioconversion. This article was published in J Ind Microbiol Biotechnol and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version