alexa Structural and functional properties of BaTX, a new Lys49 phospholipase A2 homologue isolated from the venom of the snake Bothrops alternatus.
Toxicology

Toxicology

Journal of Clinical Toxicology

Author(s): PonceSoto LA, Lomonte B, Gutirrez JM, RodriguesSimioni L, Novello JC,

Abstract Share this page

Abstract BaTX PLA(2), a K49 phospholipase A(2) homologue was purified from Bothrops alternatus venom after two chromatographic steps, molecular exclusion on Superdex 75 and reverse phase HPLC on mu-Bondapack C-18. A molecular mass of 13898.71 Da was determined by MALDI-TOF mass spectrometry. The amino acid composition showed that BaTX has a high content of Lys, Tyr, Gly, Pro, and 14 half-Cys residues, typical of a basic PLA(2). The complete amino acid sequence of BaTX PLA(2) contains 121 residues, resulting in a calculated pI value of 8.63. This sequence shows high identity values when compared to other K49 PLA(2)s isolated from the venoms of viperid snakes. Lower identity is observed in comparison to D49 PLA(2)s. The sequence was SLFELGKMIL QETGKNPAKS YGAYYCYCGW GGQGQPKDAT DRCCYVHKCC YKKLTGCNPK KDRYSYSWKD KTIVCGENNS CLKELCECDK AVAICLRENL NTYNKKYRYY LKPLCKKADA C. In mice, BaTX induced myonecrosis and edema, upon intramuscular or subcutaneous injections, respectively. The LD(50) of BaTX was 7 mug/g body weight, by intravenous route. In vitro, the toxin caused a potent blockade of neuromuscular transmission in young chicken biventer cervicis preparations. The blockage 50\% was achieved at a concentration of 0.03 microM: 40+/-0.4 min and 0.07 microM: 35+/-0.3 min. Moreover, this protein induced a rapid cytolytic effect upon mouse skeletal muscle myoblasts in culture. Thus, the combined structural and functional information obtained identify BaTX as a new member of the K49 PLA(2) family, which presents the typical bioactivities described for such proteins. This article was published in Biochim Biophys Acta and referenced in Journal of Clinical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

  • R Gandhi Gracy
    DO Insect - Bacterial Symbiosis contributing insecticidal resistance: An evidence from Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae)
    PPT Version | PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords