alexa Structural identification of the major DNA adduct formed by aflatoxin B1 in vitro.


Immunome Research

Author(s): Essigmann JM, Croy RG, Nadzan AM, Busby WF Jr, Reinhold VN

Abstract Share this page

The covalent binding of the hepatocarcinogen aflatoxin B1 by rat liver microsomes to calf thymus DNA resulted in a binding level equal to one aflatoxin residue per 60 DNA nucleotides. An aflatoxin derivative-guanine adduct was efficiently liberated from DNA with formic acid. Analytical reversed-phase high-pressure liquid chromatography of the DNA hydrolysate revealed that approximately 90% of the carcinogen bound to DNA could be accounted for as a single component. Preparative high-pressure liquid chromatography was used to isolate sufficient quantities of the adduct for structural analysis from large quantities (340 mg) of DNA. A combination of spectral and chemical data indicates that the major product of the interaction of metabolically activated aflatoxin B1 and DNA is 2,3-dihydro-2-(N7-guanyl)-3-hydroxyaflatoxin B1 with the guanine and hydroxyl functions possessing a trans configuration. The structural data support the hypothesis that the putative 2,3-oxide of aflatoxin B1 is quantitatively important as an intermediate in the binding of aflatoxin B1 to nucleic acids.

  • To read the full article Visit
  • Open Access
This article was published in Proc Natl Acad Sci U S A. and referenced in Immunome Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version