alexa Structural insights into the retroviral DNA integration apparatus.


Medicinal Chemistry

Author(s): Cherepanov P, Maertens GN, Hare S

Abstract Share this page

Abstract Retroviral replication depends on successful integration of the viral genetic material into a host cell chromosome. Virally encoded integrase, an enzyme from the DDE(D) nucleotidyltransferase superfamily, is responsible for the key DNA cutting and joining steps associated with this process. Insights into the structural and mechanistic aspects of integration are directly relevant for the development of antiretroviral drugs. Recent breakthroughs have led to biochemical and structural characterization of the principal integration intermediates revealing the tetramer of integrase that catalyzes insertion of both 3' viral DNA ends into a sharply bent target DNA. This review discusses the mechanism of retroviral DNA integration and the mode of action of HIV-1 integrase strand transfer inhibitors in light of the recent visualization of the prototype foamy virus intasome, target DNA capture and strand transfer complexes. Copyright © 2011 Elsevier Ltd. All rights reserved. This article was published in Curr Opin Struct Biol and referenced in Medicinal Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version