alexa Structural requirements for the inhibition of human monocyte carboxylesterase by organophosphorus compounds.
Toxicology

Toxicology

Journal of Environmental & Analytical Toxicology

Author(s): Saboori AM, Lang DM, Newcombe DS

Abstract Share this page

Abstract Human blood monocyte carboxylesterase (CBE) is inhibited by a variety of organophosphorus compounds including arylphosphates and arylphosphites and some alkylphosphites. Triphenyl phosphate and triphenyl phosphite with Ki values of 8 x 10(-9) M and 4.8 x 10(-8) M, respectively, are the most potent inhibitors of this enzyme evaluated by this study. The arylphosphates vary in their capacity to inhibit carboxylesterase activity. Diphenyl phosphate with its strong negative charge is not a potent inhibitor (Ki = 1 x 10(-4) M), whereas if its negative charge is neutralized, as in diphenyl methyl phosphate, its capacity to inhibit carboxylesterase is significantly increased. Compounds with increased bulk, such as trinaphthyl phosphate, only inhibit the enzyme at concentrations of 10(-5) M or greater. Arylphosphites have inhibitory capacities similar to the arylphosphates. Alkylphosphites (tributyl phosphite/triethyl phosphite) inhibit carboxylesterase activity, whereas alkylphosphates (tributyl phosphate/triethyl phosphate) have no inhibitory effect. Arylphosphines and arylphosphine oxides do not inhibit carboxylesterase activity. This study demonstrates that organophosphates and organophosphites are relatively effective inhibitors of human monocyte CBE activity with the exception of the alkylphosphates which have no inhibitory activity. We conclude that molecular bulk and charge have a significant role in determining the potency of organophosphorus inhibitors of monocyte CBE. The observed variations in the degree of esterase inhibition by organophosphorus compounds as well as the differences in the pathological expression of neuropathic disorders associated with such chemicals suggest that different esterase enzymes derived from the family of esterase genes may mediate the different neuropathies observed with organophosphorus exposures. Such data also provide the rationale for the kinetic analyses of esterases and the design of non-toxic organophosphorus compounds with low or no monocyte CBE inhibitory capacity to reduce the potential of these commonly used chemicals for human toxicity.
This article was published in Chem Biol Interact and referenced in Journal of Environmental & Analytical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version