alexa Structure- and fragment-based approaches to protease inhibition.
Immunology

Immunology

Journal of Clinical & Cellular Immunology

Author(s): Johnson SL, Pellecchia M

Abstract Share this page

Abstract Proteases are essential enzymes which regulate physiological processes such as inflammation, infection, fertilization, allergic reactions, cell growth and death, blood clotting, tumor growth and bone remodeling. The protease family consists of six major classes of enzymes which are aspartic-, serine-, cysteine-, threonine-, glutamic-, and metallo-proteases, all which are implicated in disease propagation. Therefore, protease inhibitors have been of great interest as possible targets for the development of novel therapies. Although, many protease inhibitors have followed a structural design based on either a peptidic or peptidomimetic backbone, other chemical scaffolds have recently emerged. Utilizing structure- and fragment-based design guided by X-ray crystallography, NMR spectroscopy, computational and/or extended tethering approaches, potential non-peptidic therapeutic agents could be identified. In this review, we will report on the recent developments of nonpeptidic cysteine- and metallo- protease inhibitors, focusing on their design by using such strategies.
This article was published in Curr Top Med Chem and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords