alexa Structures of ketolides and macrolides determine their mode of interaction with the ribosomal target site.
Pulmonology

Pulmonology

Journal of Pulmonary & Respiratory Medicine

Author(s): Douthwaite S, Champney WS, Douthwaite S, Champney WS

Abstract Share this page

Abstract Ketolides are the most recent generation of antimicrobials derived from the 14-membered ring macrolide, erythromycin A. The main structural feature that differentiates ketolides from erythromycin is the keto group, which replaces the L-cladinose moiety at position 3 of the macrolactone ring. The keto group bestows greater acid stability on the drugs, and enables them to bind to their ribosomal target without causing expression of MLS(B) resistance in inducible strains. Several ketolides are described here, including ABT 773 and telithromycin (HMR 3647), both of which possess a carbamate at C11/C12 of the macrolactone ring. In telithromycin, which is the first ketolide to be approved for clinical use, the carbamate is linked to an alkyl-aryl extension, which is responsible for the increased potency of this compound relative to macrolides. This review examines how the structural differences between macrolides and the new ketolides are related to their antimicrobial activities in inhibiting protein synthesis and blocking the assembly of new ribosomal subunits.
This article was published in J Antimicrob Chemother and referenced in Journal of Pulmonary & Respiratory Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psy[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords