alexa Structuring Chemical Space: Similarity-Based Characterization of the PubChem Database.


Modern Chemistry & Applications

Author(s): Cincilla G, , Thormann M, Pons M,

Abstract Share this page

Abstract The ensemble of conceivable molecules is referred to as the Chemical Space. In this article we describe a hierarchical version of the Affinity Propagation (AP) clustering algorithm and apply it to analyze the LINGO-based similarity matrix of a 500 000-molecule subset of the PubChem database, which contains more than 19 million compounds. The combination of two highly efficient methods, namely the AP clustering algorithm and LINGO-based molecular similarity calculations, allows the unbiased analysis of large databases. Hierarchical clustering generates a numerical diagonalization of the similarity matrix. The target-independent, intrinsic structure of the database , derived without any previous information on the physical or biological properties of the compounds, maps together molecules experimentally shown to bind the same biological target or to have similar physical properties. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This article was published in Mol Inform and referenced in Modern Chemistry & Applications

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version