alexa Studies on the variants of the protein toxins ricin and abrin.
General Science

General Science

Journal of Bioterrorism & Biodefense

Author(s): Hegde R, Podder SK

Abstract Share this page

Abstract This study elucidates some structural and biological features of galactose-binding variants of the cytotoxic proteins ricin and abrin. An isolation procedure is reported for ricin variants from Ricinus communis seeds by using lactamyl-Sepharose affinity matrix, similar to that reported previously for variants of abrin from Abrus precatorius seeds [Hegde, R., Maiti, T. K. & Podder, S. K. (1991) Anal. Biochem. 194, 101-109]. Ricin variants, subfractionated on carboxymethyl-Sepharose CL-6B ion-exchange chromatography, were characterized further by SDS/PAGE, IEF and a binding assay. Based on the immunological cross-reactivity of antibody raised against a single variant of each of ricin and abrin, it was established that all the variants of the corresponding type are immunologically indistinguishable. Analysis of protein titration curves on an immobilized pH gradient indicated that variants of abrin I differ from other abrin variants, mainly in their acidic groups and that variance in ricin is a cause of charge substitution. Detection of subunit variants of proteins by two-dimensional gel electrophoresis showed that there are twice as many subunit variants as there are variants of holoproteins, suggesting that each variant has a set of subunit variants, which, although homologous, are not identical to the subunits of any other variant with respect to pI. Seeds obtained from polymorphic species of R. communis showed no difference in the profile of toxin variants, as analyzed by isoelectric focussing. Toxin variants obtained from red and white varieties of A. precatorius, however, showed some difference in the number of variants as well as in their relative intensities. Furthermore, variants analyzed from several single seeds of A. precatorius red type revealed a controlled distribution of lectin variants in three specific groups, indicating an involvement of at least three genes in the production of Abrus lectins. The complete absence or presence of variants in each group suggested a post-translational differential proteolytic processing, a secondary event in the production of abrin variants.
This article was published in Eur J Biochem and referenced in Journal of Bioterrorism & Biodefense

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version