alexa Study design and statistical analysis of data in human population studies with the micronucleus assay.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular Biomarkers & Diagnosis

Author(s): Ceppi M, Gallo F, Bonassi S

Abstract Share this page

Abstract The most common study design performed in population studies based on the micronucleus (MN) assay, is the cross-sectional study, which is largely performed to evaluate the DNA damaging effects of exposure to genotoxic agents in the workplace, in the environment, as well as from diet or lifestyle factors. Sample size is still a critical issue in the design of MN studies since most recent studies considering gene-environment interaction, often require a sample size of several hundred subjects, which is in many cases difficult to achieve. The control of confounding is another major threat to the validity of causal inference. The most popular confounders considered in population studies using MN are age, gender and smoking habit. Extensive attention is given to the assessment of effect modification, given the increasing inclusion of biomarkers of genetic susceptibility in the study design. Selected issues concerning the statistical treatment of data have been addressed in this mini-review, starting from data description, which is a critical step of statistical analysis, since it allows to detect possible errors in the dataset to be analysed and to check the validity of assumptions required for more complex analyses. Basic issues dealing with statistical analysis of biomarkers are extensively evaluated, including methods to explore the dose-response relationship among two continuous variables and inferential analysis. A critical approach to the use of parametric and non-parametric methods is presented, before addressing the issue of most suitable multivariate models to fit MN data. In the last decade, the quality of statistical analysis of MN data has certainly evolved, although even nowadays only a small number of studies apply the Poisson model, which is the most suitable method for the analysis of MN data. This article was published in Mutagenesis and referenced in Journal of Molecular Biomarkers & Diagnosis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference and Expo on Molecular & Cancer Biomarkers
    August 23-24, 2017 Birmingham, UK
  • 2nd International Conference on Medical Imaging and Diagnosis
    London, UK
  • 22nd International Conference on Cancer Drugs and Therapeutics
    Paris, France
  • International Conference on Oncology Nursing and Cancer Care
    Singapore City, Singapore
  • World Summit on Cell Signalling and Cancer Therapy
    Toronto, Canada
  • International Conference on Radiology and Imaging
    New York, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version