alexa Study of features based on nonlinear dynamical modeling in ECG arrhythmia detection and classification.
Engineering

Engineering

International Journal of Sensor Networks and Data Communications

Author(s): Owis MI, AbouZied AH, Youssef AB, Kadah YM

Abstract Share this page

Abstract We present a study of the nonlinear dynamics of electrocardiogram (ECG) signals for arrhythmia characterization. The correlation dimension and largest Lyapunov exponent are used to model the chaotic nature of five different classes of ECG signals. The model parameters are evaluated for a large number of real ECG signals within each class and the results are reported. The presented algorithms allow automatic calculation of the features. The statistical analysis of the calculated features indicates that they differ significantly between normal heart rhythm and the different arrhythmia types and, hence, can be rather useful in ECG arrhythmia detection. On the other hand, the results indicate that the discrimination between different arrhythmia types is difficult using such features. The results of this work are supported by statistical analysis that provides a clear outline for the potential uses and limitations of these features. This article was published in IEEE Trans Biomed Eng and referenced in International Journal of Sensor Networks and Data Communications

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords