alexa Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Xu LC, Siedlecki CA

Abstract Share this page

Abstract Staphylococci are among the most important pathogens causing bloodstream infections associated with implanted medical devices. Control of bacterial adhesion to material surfaces is important for prevention of biofilm formation and biomaterial-associated infections. In this study, we hypothesized that submicron (staphylococcal bacterial dimension) surface textures may reduce the bacterial adhesion via a decrease in surface area that bacteria can contact, and subsequently inhibit biofilm formation. Poly(urethane urea) films were textured with two different sizes of submicron pillars via a two-stage replication process. Adhesion of two bacterial strains (Staphylococcus epidermidis RP62A and S. aureus Newman) was assessed over a shear stress range of 0-13.2 dyn cm(-2) using a rotating disk system in physiological buffer solutions. Significant decreases in bacterial adhesion were observed on textured surfaces for both strains compared with smooth controls. Biofilm formation was further tested on surfaces incubated in solution for either 2 or 5 days and it was found that biofilm formation was dramatically inhibited on textured surfaces. The results of the approaches used in this work demonstrate that patterned surface texturing of biomaterials provides an effective means to reduce staphylococcal adhesion and biofilm formation on biomaterial surfaces, and thus to prevent biomaterial-associated infections. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. This article was published in Acta Biomater and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords