alexa Sub-pg mass sensing and measurement with an optomechanical oscillator.
Engineering

Engineering

Biosensors Journal

Author(s): Liu F, Alaie S, Leseman ZC, HosseinZadeh M, Liu F, Alaie S, Leseman ZC, HosseinZadeh M

Abstract Share this page

Abstract Mass sensing based on mechanical oscillation frequency shift in micro/nano scale mechanical oscillators is a well-known and widely used technique. Piezo-electric, electronic excitation/detection and free-space optical detection are the most common techniques used for monitoring the minute frequency shifts induced by added mass. The advent of optomechanical oscillator (OMO), enabled by strong interaction between circulating optical power and mechanical deformation in high quality factor optical microresonators, has created new possibilities for excitation and interrogation of micro/nanomechanical resonators. In particular, radiation pressure driven optomechanical oscillators (OMOs) are excellent candidates for mass detection/measurement due to their simplicity, sensitivity and all-optical operation. In an OMO, a high quality factor optical mode simultaneously serves as an efficient actuator and a sensitive probe for precise monitoring of the mechanical eigen-frequencies of the cavity structure. Here, we show the narrow linewidth of optomechanical oscillation combined with harmonic optical modulation generated by nonlinear optical transfer function, can result in sub-pg mass sensitivity in large silica microtoroid OMOs. Moreover by carefully studying the impact of mechanical mode selection, device dimensions, mass position and noise mechanisms we explore the performance limits of OMO both as a mass detector and a high resolution mass measurement system. Our analysis shows that femtogram level resolution is within reach even with relatively large OMOs.
This article was published in Opt Express and referenced in Biosensors Journal

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords